Abdelrasoul, A, Doan, H, Lohi, A, & Cheng, C-H (2015). Morphology control of polysulfone membranes in filtration processes: a critical review. Chem Bio Eng Rev, 2(1), 22–43.
CAS
Google Scholar
Ananth, A, Arthanareeswaran, G, & Wang, H (2012). The influence of tetraethylorthosilicate and polyethyleneimine on the performance of polyethersulfone membranes. Desalination, 287, 61–70.
Article
CAS
Google Scholar
APHA. (1993). Standard methods for the examination of water and wastewaters (p. 874). NW, Washington DC: American Public Health Association.
Google Scholar
Arthanareeswaran, G, Thanikaivelan, P, Srinivasan, K, Mohan, D, & Rajendran, M (2004). Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. European Polymer Journal, 40, 2153–2159.
Article
CAS
Google Scholar
Arthanareeswaran, G, Thanikaivelan, P, Raguime, J A, Raajenthiren, M, & Mohan, D (2007). Metal ion separation and protein removal from aqueous solutions using modified cellulose acetate membranes: role of polymeric additives. Separation and Purification Technology, 55, 8–15.
Article
CAS
Google Scholar
Azoug, C, Sadaoui, Z, Charbit, F, & Charbit, G (1997). Removal of cadmium from wastewater by enhanced ultrafiltration using surfactants. The Canadian Journal of Chemical Engineering, 75(4), 743–750.
Article
CAS
Google Scholar
Bade, R, Lee, S H, Jo, S, Lee, H-S, & Lee, S-e (2008). Micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) hybrid processes for chromate removal from wastewater. Desalination, 229, 264–278.
Article
CAS
Google Scholar
Barakat, M A (2008). Removal of Cu(II), Ni(II), and Cr(III) ions from wastewater using complexation-ultrafiltration technique. Journal of Environmental Science and Technology, 1(3), 151–156.
Article
CAS
Google Scholar
Barbooti, M M (2015). Simultaneous removal of chromium and lead from water by sorption on Iraqi Montmorillonite. Journal of Environmental Protection, 6, 237–249.
Article
CAS
Google Scholar
Boonlertniruni, S, Boobraung, C, & Suvanasara, R (2008). Application of chitosan in rice production. Journal of Metals Materials and Minerals, 18, 47–52.
Google Scholar
Boricha, A G, & Murthy, Z V P (2010). Preparation of N, O-carboxymethyl chitosan/cellulose acetate blend nanofiltration membrane and testing its performance in treating industrial wastewater. Chemical Engineering Journal, 157, 393–400.
Article
CAS
Google Scholar
Chen, S-S, Hsu, B-C, Ko, C-H, & Chuang, P-C (2008). Recovery of chromate from spent plating solutions by two-stage nanofiltration processes. Desalination, 229, 147–155.
Article
CAS
Google Scholar
Chowdhury, M, Mostafa, M G, Biswas, T K, & Saha, A K (2013). Treatment of leather industrial effluents by filtration and coagulation processes. Water Resources and Industry, 3, 11–22.
Article
Google Scholar
Crini, G (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30, 38–70.
Article
CAS
Google Scholar
De Lima, R, Feitosa, L, Santo Pereira, A E, De Moura, M R, Fauze Ahmad Aouada, F A, Mattoso, L H C, Fraceto, L F (2010). Evaluation of the genotoxicity of chitosan nanoparticles for use in food packaging films. Journal of Food Science, 75, 89–96.
Article
Google Scholar
Duruibe, J O, Ogwuegbu, M O C, & Egwurugwu, J. N. (2007). Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2(5), 112–118.
Google Scholar
El Hadrami, A, Adam, L R, El Hadrami, I, & Daayf, F (2010). Chitosan in plant protection. Marine Drugs, 8, 968–987.
Article
CAS
Google Scholar
Eren, E, Sarihan, A, Eren, B, Gumus, H, & Kocak, F O (2015). Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. Journal of Membrane Science, 475, 1–8.
Article
CAS
Google Scholar
Gökşen, Ç (2005). Development of a membrane based treatment scheme for water recovery from textile effluents (M.Sc. Thesis). Ankara: Middle East Technical University.
Google Scholar
Gorey, C, & Escobar, I C (2011). N-isopropylacrylamide (NIPAAM) modified cellulose acetate ultrafiltration membranes. Journal of Membrane Science, 383, 272–279.
Article
CAS
Google Scholar
Gotoh, M, Tamiya, E, & Karube, I (1993). Preparation and performance of poly (vinyl butyral) membrane for ultrafiltration. Journal of Applied Polymer Science, 48, 67–73.
Article
CAS
Google Scholar
Habibi, S, Nematollahzadeh, A, & Mousavi, S A (2015). Nano-scale modification of polysulfone membrane matrix and the surface for the separation of chromium ions from water. Chemical Engineering Journal, 267, 306–316.
Article
CAS
Google Scholar
Ham-Pichavant, F, Sebe, G, Pardon, P, & Coma, V (2005). Fat resistance properties of chitosan-based paper packaging for food applications. Carbohydrate Polymers, 61, 259–265.
Article
CAS
Google Scholar
Idris, A, & Yet, L K (2006). The effect of different molecular weight PEG additives on cellulose acetate asymmetric dialysis membrane performance. Journal of Membrane Science, 280, 920–927.
Article
CAS
Google Scholar
Jayakrishnan, P, & Ramesan, M T (2016). Synthesis, characterization and properties of poly (vinyl alcohol)/chemically modified and unmodified pumice composites. Journal of Chemical and Pharmaceutical Sciences, 1, 97–104.
Google Scholar
Jyothi, M S, Nayak, V, Padaki, M, Geetha Balakrishna, R, & Ismail, A F (2014). The effect of UV irradiation on PSf/TiO2 mixed matrix membrane for chromium rejection. Desalination, 354, 189–199.
Article
CAS
Google Scholar
Kamble, S B, & Marathe, K V (2005). Micellar-enhanced ultrafiltration of chromate [Cr(VI)] ion from aqueous streams by using cationic surfactant. Indian Journal of Chemical Technology, 12, 393–400.
CAS
Google Scholar
Karuppasamy, K, Thanikaikarasan, S, Antony, R, Balakumar, S, & Shajan, X S (2012). Effect of nanochitosan on electrochemical, interfacial and thermal properties of composite solid polymer electrolytes. Ionics, 18(8), 737–745.
Article
CAS
Google Scholar
Kato, Y, Onishi, H, & Machida, Y (2003). Application of chitin and chitosan derivatives in the pharmaceutical field. Current Pharmaceutical Biotechnology, 4, 303–309.
Article
CAS
Google Scholar
Kesting, R E (1985). Synthetic polymeric membranes: a structural perspective. New York: Wiley.
Google Scholar
Khulbe, K C, Gagne, S, Mohammadi, A T, & Lamarche, A M (1995). Investigation of polymer morphology of integral asymmetric membranes by ESR and raman spectroscopy and its comparison with homogeneous films. Journal of Membrane Science, 98, 201.
Article
CAS
Google Scholar
Kowalik-Klimczak, A, & Gierycz, P (2014). Application of pressure membrane processes for the minimization of the noxiousness of chromium tannery wastewater. Problemy Eksploatacji – Maintenance Problems, 1, 71–79.
Google Scholar
Krishanamoorthi, S, Sivakumar, V, Saravanan, K., & Sriram Prabhu, T V (2009). Treatment and reuse of tannery waste water by embedded system. Modern Applied Science, 3(1), 129–134.
CAS
Google Scholar
Kumar, M N V R, Muzzarelli, R A A, Muzzareli, C, Sashiwa, H, & Domb, A J (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 104, 6017–6084.
Article
Google Scholar
Kuttowy, O, & Sourirajan, S (1975). Cellulose acetate ultrafiltration membranes. Journal of Applied Polymer Science, 19, 1449–1460.
Article
Google Scholar
Li, J F, Xu, Z L, Yang, H, Yu, L Y, & Liu, M (2009). Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science, 255, 4725–4732.
Article
CAS
Google Scholar
Loeb, S, & Sourirajan, S (1963). Sea water demineralization by means of an osmotic membrane. In Advances in Chemistry (pp. 117–132). Washington, DC: ACS publications.
Google Scholar
Maheswari, P, Prasannadevi, D, & Mohan, D (2013). Preparation and performance of silver nanoparticle incorporated polyetherethersulfone nanofiltration membranes. High Performance Polymers, 25(2), 174–187.
Article
Google Scholar
Malik, D, Singh, S, Thakur, J, Singh, R K, Kaur, A, & Nijhawan, S (2014). Heavy metal pollution of the Yamuna river: an introspection. International Journal of Current Microbiology and Applied Science, 3(10), 856–863.
CAS
Google Scholar
Mohammadpour Dounighi, N, Behfar, A, Ezabadi, A, Zolfagharian, H, & Heydari, M (2010). Preparation of chitosan nanoparticles containing Naja naja oxiana snake venom. Nanomedicine: Nanotechnology, Biology, and Medicine, 6, 137–143.
Google Scholar
Moosa, A A, Ridha, A M, & Abdullha, I N (2015). Chromium ions removal from wastewater using activated Iraqi Bentonite. International Journal of Innovative Research in Science, Engineering and Technology, 4(2), 15–25.
Article
Google Scholar
Muthukrishnan, M, & Guha, B K (2008). Effect of pH on rejection of hexavalent chromium by nanofiltration. Desalination, 219, 171–178.
Article
CAS
Google Scholar
Nara, S, & Komiya, T (1983). Studies on the relationship between water-saturated state and crystallinity by the diffraction method for moistened potato starch. Starch-starke, 35, 407–410.
Article
CAS
Google Scholar
Nath, K (2008). Membrane separation processes. New Delhi: PHI Learning Pvt. Ltd.
Google Scholar
Ng, L T, & Swami, S (2005). IPNs based on chitosan with NVP and NVP/HEMAsynthesised through photoinitiator-free photopolymerisation technique forbiomedical applications. Carbohydrate Polymer, 60, 523–528.
Article
CAS
Google Scholar
Northcott, K A, Snape, I, Scales, P J, & Stevens, G W (2005). Dewatering behaviour of water treatment sludges associated with contaminated site remediation in Antarctica. Chemical Engineering Science, 60(24), 6835–6843.
Article
CAS
Google Scholar
Osada, V, & Nakagawa, I (1992). Membrane science and technology. New York: Marcel Dekker.
Google Scholar
Pang, M, Liu, B, Kano, N, & Imaizumi, H (2015). Adsorption of chromium (VI) onto activated carbon modified with KMnO4. Journal of Chemistry and Chemical Engineering, 9, 280–287.
CAS
Google Scholar
Pusch, W. & Mossa, G (1978). Influence of pressure and/or pressure differential on membrane permeability. Desalination, 24, 39–53.
Article
CAS
Google Scholar
Qu, P, Tang, H, Gao, Y, Zhang, L-p, & Wang, S (2010). Polyethersulfone composite membrane blended with cellulose fibrils. BioResources, 5(4), 2323–2336.
CAS
Google Scholar
Rajesh, S, Maheswari, P, Senthilkumar, S, Jayalakshmi, A, & Mohan, D (2011). Preparation and characterisation of poly (amide-imide) incorporated cellulose acetate membranes for polymer enhanced ultrafiltration of metal ions. Chemical Engineering Journal, 171, 33–44.
Article
CAS
Google Scholar
Rinoudo, M (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31, 603–632.
Article
Google Scholar
Rowe, R C, Sheskey, P J, & Weller, P J (2003). Handbook of pharmaceutical excipients (4th ed.). Washington, DC: American Pharmaceutical Association.
Google Scholar
Saljoughi, E.,Sadrzadeh, M, & Mohammadi, T (2009). Effect of preparation variables on morphology and pure water permeation flux through asymmetric cellulose acetate membranes. Journal of Membrane Science, 326, 627–634.
Article
CAS
Google Scholar
Shi, F, Ma, Y, Ma, J, Wang, P, & Sun, W (2012). Preparation and characterization of PVDF/TiO2 hybrid membranes with different dosage of nano-TiO2. Journal of Membrane Science, 389, 522–531.
Article
CAS
Google Scholar
Sivakami, M S, Gomathi, T, Venkatesan, J, Jeong, H-S, Kim, S-K, & Sudha, P N (2013). Preparation and characterization of nano chitosan for treatment wastewaters. International Journal of Biological Macromolecules, 57, 204–212.
Article
CAS
Google Scholar
Sivakumar, M, Malaisamy, R, Sajitha, C J, Mohan, D, Mohan, V, & Rangarajan, R (2000). Preparation and performance of cellulose acetate-polyurethane blend membranes and their applications—II. Journal of Membrane Science, 169, 215–228.
Article
CAS
Google Scholar
Sivakumar, M, Mohan, D R, & Rangarajan, R (2006). Studies on cellulose acetate-polysulfone ultrafiltration membranes II. Effect of additive concentration. Journal of Membrane Science, 268, 208–219.
Article
CAS
Google Scholar
Subbu, C, Chithra Mathew, M, Kesavan, K, & Rajendran, S (2014). Electrochemical, structural and optical studies on poly(vinylidene chloride-co-acrylonitrile) based polymer blend membranes. International Journal of Electrochemical Science, 9, 4944–4958.
Google Scholar
Sudha, P N (2010). Chitin/chitosan and derivatives for wastewater treatment. In S-K Kim (Ed.), Chitin, Chitosan, Oligosaccharides and Their Derivatives (pp. 561–585). Boca Raton: CRC Press.
Chapter
Google Scholar
Suh, J K F, & Matthew, H W T (2000). Application of chitosan-based polysaccharide biomaterilas in cartilage tissue engineering: a review. Biomaterials, 21, 2589–2598.
Article
CAS
Google Scholar
Sun, L, Du, Y, Yang, J H., Shi, X W, Li, J, Wang, X H, Kennedy, JF (2006). Conversion of crystal structure of the chitin to facilitate preparation of a 6-carboxychitin with moisture absorption–retention abilities. Carbohydrate Polymers, 66(2), 168–175.
Article
CAS
Google Scholar
Tamura, M, Uragami, T, & Sugihara, M (1981). Studies on synthesis and permeabilities of special polymer membranes, CA30. Ultrafiltration and dialysis characteristics of cellulose nitrate poly (vinylpyrrolidone) polymer blend membranes. Polymer, 22, 829–835.
Article
CAS
Google Scholar
Trivedy, R K, & Goel, P K (1986). Chemical and biological methods for water pollution studies (pp. 43–45). Karad: Environ. Publications.
Google Scholar
Trivunac, K, & Stevanovic, S (2006). Removal of heavy metal ions from water bycomplexation-assisted ultrafiltration. Chemosphere, 64, 486–491.
Article
CAS
Google Scholar
Tucci, M G, & Rocotti, G (2003). Chitosan and gelatin as engineered dressing for wound repair. Journal of Bioactive and Compatible Polymer, 16, 145–157.
Article
Google Scholar
Vellingiri, K, Ramachandran, T, & Senthilkumar, M (2013). Eco-friendly application of nano chitosan in antimicrobial coatings in the textile industry. Nanoscience and Nanotechnology, 3(4), 75–89.
CAS
Google Scholar
Velu, S, Muruganandam, L, & Arthanareeswaran, G (2011). Effect of solvents on performance of polyethersulfone ultrafiltraion membranes for separation of metal ions. International Journal of Chemical and Analytical Science, 2, 82–86.
Google Scholar
Verliefde, A R D, Cornelissen, E R, Heijman, S G J, Verberk, J Q J C, Amy, G L, Van der Bruggen, B, van Dijk, J C (2008). The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration. Journal of Membrane Science, 322, 52–66.
Article
CAS
Google Scholar
Vijayalakshmi, K, Gomathi, T, & Sudha, P N (2014). Preparation and characterization of nanochitosan/sodium alginate/microcrystalline cellulose beads. Der Pharmacia Lettre, 6(4), 65–77.
CAS
Google Scholar
Vimal, S, Abdul Majeed, S, Taju, G, Nambi, K S N, Sundar Raj, N, Madan, N, Farook, M A, Rajkumar, T, Gopinath, D, Sahul Hameed, A S (2013). Chitosan tripolyphosphate (CS/TPP) nanoparticles: preparation, characterization and application for gene delivery in shrimp. Acta Tropica, 128, 486–493.
Article
CAS
Google Scholar
Wienk, I M, Boom, R M, Beerlage, M A M, Bulte, A M W, Smolders, C A, & Strathmann, H (1996). Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. Journal of Membrane Science, 113, 361–371.
Article
CAS
Google Scholar
Witte, P V, Dijkstra, P J, Vanden Berg, J W A, & Feijen, J (1996). Phase separation process in polymer solution in relation to membrane formation. Journal of Membrane Science, 117, 1–31.
Article
Google Scholar
Yao, Z, Shiyuan, D, Zhang, Y, Zhu, B, Zhu, L, & John, A E (2015). Positively charged membrane for removing low concentration Cr(VI)in ultrafiltration process. Journal of Water Process Engineering, 8, 99–107.
Article
Google Scholar
Yu, J H. Du, Y M, & Zheng, H (1999). Blend films of chitosan—gelation. Journal Wuhan University, 45, 440–444.
Google Scholar
Zeng, J, Ye, H, & Hu, Z J (2009). Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions. Journal of Hazardous Materials, 161(2-3), 1491–1498.
Article
CAS
Google Scholar
Zeng, G, Lian, G, Zhang, Y, Lu, G, Zhou, Y, Qiu, J, van der Bruggencd, B, Shen, J (2016). Potential applications of abandoned aromatic polyamide reverse osmosis membrane by hypochlorite degradation. RSC Advances, 6, 12263–12271.
Article
CAS
Google Scholar