Aliabadi, M., Irani, M., Ismaeili, J., Piri, H., & Parnian, M. J. (2013). Electrospun nanofiber membrane of PEO/chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. Chemical Engineering Journal, 220, 237–243.
Article
CAS
Google Scholar
Alzahrani, S., & Mohammad, A. W. (2014). Challenges and trends in membrane technology implementation for produced water treatment: a review. Journal of Water Process Engineering, 4, 107–133.
Article
Google Scholar
Anitha, T., Kumar, P. S., & Kumar, S. (2015). Binding of Zn(II) ions to chitosan-PVA blend in aqueous environment: adsorption kinetics and equilibrium studies. Environmental Progress & Sustainable Energy, 34, 15–22.
Article
CAS
Google Scholar
Arshadi, M., Soleymanzadeh, M., Salvacion, J. W. L., & SalimiVahid, F. (2014). Nanoscale zero-valent iron (NZVI) supported on sineguelas waste for Pb(II) removal from aqueous solution: kinetics, thermodynamic and mechanism. Journal of Colloid and Interface Science, 426, 241–251.
Article
CAS
Google Scholar
Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4, 361–377.
Article
CAS
Google Scholar
Bilal, M., Shah, J. A., Ashfaq, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A., Haroon, H., Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater—a review. Journal of Hazardous Materials, 263, 322–333.
Article
CAS
Google Scholar
BIS. (1994). Methods of sampling and test (physical and chemical) for water and waste water. Part 54 Nickel. IS No. 3025.
Boparai, K. H., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186, 458–465.
Article
CAS
Google Scholar
Dermentzis, K. (2010). Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization. Journal of Hazardous Materials, 173, 647–652.
Article
CAS
Google Scholar
El-Sadaawy, M., & Abdelwahab, O. (2014). Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat. Alexandria Engineering Journal, 53, 399–408.
Article
Google Scholar
Fan, T., Liu, Y. G., Feng, B. Y., Zeng, G. M., Yang, C. P., Zhou, M., Zhou, HZ., Tan, ZF., Wang, X. (2008). Biosorption of cadmium(II), zinc(II) and lead(II) by Penicillium simplicissimum: isotherms, kinetics and thermodynamics. Journal of Hazardous Materials, 160, 655–661.
Article
CAS
Google Scholar
Freundlich, H. M. F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, 385–470.
CAS
Google Scholar
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92, 407–418.
Article
CAS
Google Scholar
Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, 194–205.
Article
CAS
Google Scholar
Fu, Y., Wu, J., Zhou, H., & Jin, G. (2015). Removal of nickel(II) from aqueous solutions using iminodiacetic acid functionalized polyglycidyl methacrylate grafted-carbon fibers. Chinese Journal of Chemical Engineering, 23, 919–923.
Article
CAS
Google Scholar
Gao, J., Liu, F., Ling, P., Lei, J., Li, L., Li, C., Li, A. (2013). High efficient removal of Cu(II) by a chelating resin from strong acidic solutions: complex formation and DFT certification. Chemical Engineering Journal, 222, 240–247.
Article
CAS
Google Scholar
Gong, X., Li, W., Wang, K., & Hu, J. (2013). Study of the adsorption of Cr(VI) by tannic acid immobilized powdered activated carbon from micro-polluted water in the presence of dissolved humic acid. Bioresource Technology, 141, 145–151.
Article
CAS
Google Scholar
Ho, Y. S., & McKay, G. (1999). Pseudo-second order kinetic model for sorption processes. Process Biochemistry, 34, 451–465.
Article
CAS
Google Scholar
Jeon, C., & Cha, J. H. (2015). Removal of nickel ions from industrial wastewater using immobilized sericite beads. Journal of Industrial and Engineering Chemistry, 24, 107–112.
Article
CAS
Google Scholar
Jiang, N., Xu, Y., Dai, Y., Luo, W., & Dai, L. (2012). Polyaniline nanofibers assembled alginate microsphere for Cu2+ and Pb2+ uptake. Journal of Hazardous Materials, 215–216, 17–24.
Article
Google Scholar
Karami, H. (2013). Heavy metal removal from water by magnetite nanorods. Chemical Engineering Journal, 219, 209–216.
Article
CAS
Google Scholar
Kumar, P.S., Pavithra, J., Suriya, S., Ramesh, M., Kumar, K.A. (2015). Sargassum wightii, a marine alga is the source for the production of algal oil, bio-oil, and application in the dye wastewater treatment. Desalination and Water Treatment, 55, 1342–1358.
Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetensk Handl, 24, 1–39.
Google Scholar
Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of American Chemical Society, 40, 1361–1368.
Article
CAS
Google Scholar
Lata, H., Garg, V., & Gupta, R. (2008). Adsorptive removal of basic dye by chemically activated Parthenium biomass: equilibrium and kinetic modeling. Desalination, 219, 250–261.
Article
CAS
Google Scholar
Lee, S. M., & Tiwari, D. (2012). Organo and inorgano-organo-modified clays in the remediation of aqueous solution: an overview. Applied Clay Science, 59–60, 84–102.
Article
Google Scholar
Li, X., Qi, Y., Li, Y., Zhang, Y., He, X., & Wang, Y. (2013). Novel magnetic beads based on sodium alginate gel crosslinked by zirconium(IV) and their effective removal for Pb2+ in aqueous solutions by using a batch and continuous systems. Bioresource Technology, 142, 611–619.
Article
CAS
Google Scholar
Low, M. J. D. (1960). Kinetics of chemisorption of gases on solids. Chemical Reviews, 60, 267–312.
Article
CAS
Google Scholar
Mahmoud, A. M., Ibrahim, F. A., Shaban, S. A., & Youssef, N. A. (2015). Adsorption of heavy metal ion from aqueous solution by nickel oxide nano catalyst prepared by different methods. Egyptian Journal of Petroleum, 24, 27–35.
Article
Google Scholar
Martins, A. E., Pereira, M. S., Jorgetto, O. A., Martines, M. A. U., Silva, R. I. V., Saeki, M. J., Castro, GR. (2013). The reactive surface of castor leaf [Ricinus communis L.] powder as a green adsorbent for the removal of heavy metals from natural river water. Applied Surface Science, 276, 24–30.
Article
CAS
Google Scholar
Paulino, A. T., Guilherme, M. R., Reis, A. V., Tambourgi, E. B., Nozaki, J., & Muniz, E. C. (2007). Capacity of adsorption of Pb2+ and Ni2+ from aqueous solution by chitosan produced from silkworm chrysalides in different degrees of deacetylation. Journal of Hazardous Materials, 147, 139–147.
Article
CAS
Google Scholar
Prabu, D., Parthiban, R., Kumar, P. S., & Namasivayam, S. K. R. (2015). Synthesis, characterization and antibacterial activity of nano zero-valent iron impregnated cashew nut shell. International Journal of Pharmacy and Pharmaceutical Science, 7, 139–141.
Google Scholar
Prabu, D., Parthiban, R., Kumar, P.S., Kumari, N., Saikia, P. (2016). Adsorption of copper ions onto nano-scale zero-valent iron impregnated cashew nut shell. Desalination and Water Treatment, 57, 6487–6502.
Purkayastha, D., Mishra, U., & Biswas, S. (2014). A comprehensive review on Cd(II) removal from aqueous solution. Journal of Water Process Engineering, 2, 105–128.
Article
Google Scholar
Rajkumar, P., Kumar, P. S., Priyadharshini, M., Kirupha, S. D., Baskaralingam, P., & Sivanesan, S. (2014). Removal of Cu(II) ions from aqueous solution by adsorption onto activated carbon produced from Guazumaulmifolia seeds. Environmental Engineering and Management Journal, 13, 905–914.
CAS
Google Scholar
Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherms. Journal of Physical Chemistry, 63, 1024–1026.
Article
CAS
Google Scholar
Singh, B., & Das, S. K. (2013). Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes. Colloids and Surfaces B: Biointerfaces, 107, 97–106.
Article
Google Scholar
Sips, R. (1948). On the structure of a catalyst surface. Journal of Physical Chemistry, 16, 490–495.
Article
CAS
Google Scholar
Tanhaei, B., Chenar, M. P., Saghatoleslami, N., Hesampour, M., Kallioinen, M., Sillanpaa, M., Manttari, M. (2014). Removal of nickel ions from aqueous solution by micellar-enhanced ultrafiltration, using mixed anionic-non-ionic surfactants. Separation and Purification Technology, 138, 169–176.
Article
CAS
Google Scholar
Tashvigh, A. A., Fouladitajar, A., & Ashtiani, F. Z. (2015). Modeling concentration polarization in crossflow microfiltration of oil-in-water emulsion using shear-induced diffusion; CFD and experimental studies. Desalination, 357, 225–232.
Article
Google Scholar
U.S EPA. (2004). Guidelines for water reuse, EPA/625/R-04/108, U.S. Agency for Inter. Development, Washington, DC, USA.
Google Scholar
Uzum, C., Shahwan, T., Eroglu, A. E., Hallam, K. R., Scott, T. B., & Lieberwirth, I. (2009). Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Applied Clay Science, 43, 172–181.
Article
CAS
Google Scholar
Wei, X., Gu, P., & Zhang, G. (2014). Reverse osmosis concentrate treatment by a PAC countercurrent four-stage adsorption/MF hybrid process. Desalination, 352, 18–26.
Article
CAS
Google Scholar
Zhou, G., Liu, C., Tang, Y., Luo, S., Zeng, Z., Liu, Y., Xu, R., Chu, L. (2015). Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal form wastewater. Chemical Engineering Journal, 280, 275–282.
Article
CAS
Google Scholar